• Россия, 664033, г. Иркутск,
    ул. Лермонтова, д.132
  • (3952) 42-67-21

full text (pdf)

THE ROLE OF ORGANELLES IN FUNCTIONING OF STEROID HORMONAL SYSTEMS IN ANIMALS AND HIGHER PLANTS

Original title

РОЛЬ ОРГАНЕЛЛ В ФУНКЦИОНИРОВАНИИ СТЕРОИДНЫХ ГОРМОНАЛЬНЫХ СИСТЕМ У ЖИВОТНЫХ И ВЫСШИХ РАСТЕНИЙ

Authors

E.K. Shematorova1, I.Yu. Slovokhotov1, E.N. Baranova2, M.R. Khaliluev2, O.G. Babak3, V.N. Klykov1, D.G. Shpakovski1, S.G. Spivak3,4, G.V. Shpakovski1

Contact information

1 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia, e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

2 All-Russian Research Institute of Agricultural Biotechnology, Moscow, Russia, e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

3 Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus, e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

4 Belarusian State Medical University, Minsk, Belarus, e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Pages

155-157

DOI

10.31255/978-5-94797-318-1-155-157

Abstract

Hormonal functions of steroids as a special class of chemical compounds and basic ways of their biosynthesis was first elucidated in animals where the biosynthesis of steroid hormones clearly expressed the principle of compartmentalization. According to the classical scheme of steroidogenesis in animals, a key role in the biosynthesis of steroid hormones plays cytochrome Р450ѕсс (from ‘side chain cleavage’) which is localized in the inner membrane of the mitochondria of steroidogenic tissue cells (primarily, in adrenal cortex) and, with the participation of two other components of the mitochondrial electron transport chain, adrenodoxin (Ad) and adrenodoxin reductase (AdR), catalyzes the reactions of the 22- and 20-hydroxylation and cleavage reaction of the C20–C22 bond with the removal of the side chain of cholesterol and its conversion into pregnenolone which is a common precursor of all steroid hormones (corticosteroids, progestins and sex hormones). The formed prohormone pregnenolone leaves the mitochondria and enters the endoplasmic reticulum.

Although no genes encoding the cytochrome CYP11A1 (P450scc) and other mitochondrial cytochromes P450 (the ‘mito CYP’ clan) were found in plants, strict proofs of the presence in planta a number of hormonal steroid compounds peculiar for animals (pregnenolone sulfate, progesterone, 17-hydroxyprogesterone, 16-dihydroprogesterone, androstenedione) have been recently accumulated. We have constructed transgenic tobacco, Digitalis and tomato plants, effectively expressing cDNA of the mammalian CYP11A1 gene, and for the first time showed that a significant (about 5 times) increasing of the endogenous progesterone level in these transgenic plants leads to hormonal effects such as acceleration of plants growth and development and a significant improvement of their resistance to abiotic and biotic stresses. This implies that the progesterone can be considered as a very ancient bioregulator of plant cells and the first real hormones that are common to plants and animals. Our detection in plants of mitochondrial adrenodoxin-like [2Fe–2S] ferredoxins MFDX1 and MFDX2 and structural homologue of adrenodoxin reductase MFDR, and discovery by other authors membrane receptors of progesterone and homologues of proteins responsible for delivery of cholesterol in animal cells’ mitochondria, allows for the first time to present the general outlines of a new, ‘progesterone system’ of steroid hormonal regulation in higher plants.